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Abstract: In this paper, we present an optimized sampling strategy based on curvelet for the data acquisition, which leads to better 
performance by the sparsity-promoting inversion in comparison with random sampling scheme. One of motivation is to provide a 
new direction of applications of the curvelet transform for data aggregation in image recovery. An analysis of a data aggregation 
scheme based on curvelet transforms and thresholding iterative scheme for recovering data from aggregated signals is presented.  
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1. INTRODUCTION 
Applications such as Medical Imaging, Genomic Data 

Analysis, and Remote Surveillance require higher 

sampling rates to reconstruct the signal with high 

precision at lower costs. Further, higher sampling rates 

increase data to be transmitted requiring more 

bandwidth else will suffer longer delays. To achieve the 

objectives of transferring the data with lower bandwidth 

and within acceptable delays, sample compression is 

employed. However,  

compression may cause distortion while reconstructing 

the signal from decompressed samples. It is a 

challenging task to develop compression systems with 

high compression ratio as well as lower loss of 

information during compression. 

Transform coding is a technique of finding a reference 

basis or frame to make the represented signal sparse or 

compressible. Sparsity means “representing a signal of 

length n with k<< n nonzero coefficients” and 

compressibility states “signal can be well approximated with 

only k non-zero coefficients”. Locations and values of only 

k largest coefficients are preserved at the time of creating 

the sparse representation. This technique has been 

widely used in JPEG, JPEG2000, MPEG and MP3 

standards [1]. In our study, we describe an aggregation 

scheme using curvelet transform and proposed a 

reconstruction scheme based on iterative curvelet 

thresholding .   

 

2. RELATED WORK  
Mathematical basis of curvelet transform [2,3,4] was 

derived extending Unequally Spaced Fast Fourier 

Transform (USFFT) that obeys a parabolic scaling 

relation which says that at scale 2-j each element has an 

envelope aligned along a ridge of length 2-j/2 and width 2-j. 

Transforms were successfully used for compression of 

image data using the proposed transforms. However, the 

proposed scheme was not very effective in digital 

coronization due to tiling effect. 

----------------------------------------------------------------------- 

 

 

Plonka et al. [5] reviewed applications of curvelet 

transforms for image/video processing, seismic 

exploration, fluid mechanics, and simulation of partial 

differential equations and compressive sensing. A multi-

resolution geometric analysis technique with curvelet as 

the basis function to deal with future challenges was also 

presented.  

Results on threshold of number of samples required for 

exact reconstruction of sampled data were presented by 

Qaiser et al. [6]. A convex optimization problem was 

designed for exact recovery of the compressed signal. It 

is shown that any signal of N can be made out of n 

spikes with high probability upto the Ο(n.log N) where 

N>>n, using ℓ1 regularization problem [7]. Donoho et al. 

[8] designed a compressed data acquisition protocol 

which performed equivalent to directly acquiring just 

the important information about the signals, in effect, 

and not acquiring that part of the data that would 

eventually just be “thrown away” by lossy compression. 

However, stability of the proposed transform was not 

established.  

3. DATA AGGREGATION USING 
CURVELET TRANSFORM 

Let there be a set of n pixels divided into k clusters with 

ith cluster having a population of mi pixels. The CH 

receives L bits from each Cluster Member (CM) and 

fuses the received data into a frame of appropriate size. 

Observations of mi pixels of each cluster are column 

matrix of (mi x 1) i.e. 1 2( , ,... )
i

T
mX x x x . 

A compressed version Y of X is obtained through a 

measurement matrix Φ, i.e. Y = ΦX, where Φ is an m x n 

matrix, named as sensing matrix, with m<<n and 

generated through same transform. Each element yi in 

the vector Y is called a random projection, which can be 

computed as an inner product of the form  

1

n

i ij j

j

y x


      (1) 

CH receives the data xj from jth member of the cluster and 

form X s.t. 1 2( , ,... )
i

T
mX x x x which is considered to 

be compressible. Thus, the process of data aggregation 

consists of the two steps namely (i) collection of random 

1School of Computer Science, University of Petroleum and 

Energy studies, Dehradun, India, sahayayush15@stu.upes.ac.in, 
2Department of Mathematics, Government College, Kota, India, 

arunkr71@gmail.com 

 

 

IJSER

http://www.ijser.org/
mailto:sahayayush15@stu.upes.ac.in


International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019                                                                      493 
ISSN 2229-5518  

IJSER © 2019 

http://www.ijser.org 

projections Y of X and (ii) recovering signal X from Y. 

Collection of projections needs to be computed at the CH 

and recovery will be made at the sink. 

Curvelet Transform (CT) introduced by Candes & 

Donoho [6] is defined as function of x at scale 2-j oriented 

at θl positioned at  

( ) 2
1 2( 2 , 2 )

l

j

jl j j
kx R k k


     w. r. t. CH  i.e. 

( ) ( ( ))jl
jlk j l kx R x x       (2) 

Where, Rθ is the angular position.  

cos sin

sin cos
R

 

 

 
  

 
, and 

1 TR R R  


   

Hence, curvelet coefficient for a pixel set f  
is the inner 

product of CT with the data set. 

( , , ) ,
jlk

C j l k f   
 

2

( )( )
jlk

R

xf x dx   in       

  continuous form  

1

( )( )
n

T
i jlk

i

xf x 



 

in discrete form       (3) 

So the arbitrary function 
2 2( ) ( )if x L R can be 

reconstructed as , jlk

jlk

f f    at CH. With 

equality holding with Parseval relation 

2 2

2 2 2 2

( )
, ( )jlk L R

jlk

f f f L R    
       

(4) 

As standard in scientific computation, curvelet 

coefficients can never be calculated if f is derived in 

implicit form and these are the rows of matrix 

representing the linear transformation, known as Riesz 

representation. 
ANALOG DIGITAL OF THE CURVELET COEFFICIENT 

In case of data aggregation, the Cartesian curvelets is 

defined as  
3

4( ) 2 ( ( ))
l l

j

T T
jlk jx S x S b        2

1 2( 2 , 2 )

j

jb k k


   

and
1 0

tan 1l

l

S


 
  

         

(5) 

So, the analog digital coefficient of the curvelet 

transform is given by  

1,1

1

( , , ) ( ) ( ) )l

l

n
i b S x

i j

i

C j l k f x U S x e 



 



   

and through a shearing operation, we get 
,

( , , ) ( ) ( ) )i

l

i b x
i j iC j l k f S x U x e

 
        (6) 

where, 

3

4( ) 2 (2 ) (2 )
2

j

j l
j i i

jU x W x V





        with,  

2 3
(2 ) 1 (0, )

4

j
i

j
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      and

2 1 1
( ) 1 ( , )

2 2
i

l

V t x t




      ,   ( )j iU x  can be 

calculated recursively. 

Numerical computation of the equation is straight 

forward for 0l  and involves the following 3 steps: 

(i) Start with FFT of object f and obtain f  
(ii) Multiply 

f  with jU (iii) inverse FT on the range 

2
1 2( 2 , 2 )

j

jb k k . 

But, the inverse Discrete Fourier Transform (DFT) on 

non-standard sheared grid, 
/2

1 2( .2 , 2 )
l

T j jS k k
  

is 

very difficult to calculate. So, to recover the data using 

rectangular grid, we apply the shearing operation to f

and re-derive the equation (6) as 

,( , , ) ( ) ( ) )
l

i b
jC j l k f S U e 

    
      

(7) 

Where,   is obtained by shearing operation on X.  

 

 

 

 

  

 

 

 

 

 

 

4. IMAGE RECOVERY: 
Compressive sensing is a two step process. The first step 

is to collect the compressed data and in the second phase 

the data is reconstructed at the fusion centre. Signal 

recovery is the process of reconstructing the observed 

signal from the k-sparse samples. Researchers [9,10] 

studied the problem and suggested different techniques 

for data recovery.  

Mathematically, signal reconstruction is equivalent to 

recovering a sparse signal 
nV R  with V  having few 

non-zero coefficients. All we know about the signal is m-

non-adaptive measurements X which have been 

observed from   X V  where,   is Rmxn matrix 

(sensing) developed in the previous section from 

curvelet transform. 

If m = length of signal, then signals can be reconstructed 

perfectly. However, for m<<n several algorithmic 

approaches have been proposed [11]. The two most 

appealing algorithms are: 

1. Iterative Curvelet Thresholding, and 

2. Greedy Pursuit Algorithms (or Orthogonal 

Matching Pursuit) 

Detailed description of the first algorithm is as follows. 

ITERATIVE CURVELET THRESHOLDING 

Compressive Sensing asserts that we can recover certain 

signals from far fewer samples or measurements than 

required in traditional methods. In the measurement  

Y AX        (8) 

Sparse Image
  

Apply 
Transform
  

Apply Iterative 
Threshold 

Recovered 
Image  
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with Amxn measurement matrix s.t. m<<n and ε is the 

measurement noise. Normally, it is an undetermined ill 

posed problem to recover x from its measurement y. To 

make the form solvable, CS relies on sparsity. 

 

Algorithm:  Sparse Representation – based  

                     Classification for Image recovery 

Input:  A matrix of pixels 
Xmn NR  of C pixels, a 

pixel 
Ny R

 

and an error e> 0

 
1. Normalise the columns of Ф to have a L2 norm of 1 

 2. Solve the L1 minimisation problem : 

0

1
2

2
1

1

1

arg min ( )
N

n
e n

c e e

subject to c y f





 

   


 

3.   Compute the residuals   

 0

2

( ) ( ) 1,2,3,...i i ir y y c for all i C


  

 

here denote all the pixels and 

essential coefficients associated with image i. 

Output :   = identity of y=a rg min iri(y) 

 

 

 

 

 

 

 

 

 

 

 

a. Original image 

 

 

 

 

b. Reconstructed Image 

 

 

 

 

Sparsity: Let x be the signal data and D is the transform. 

If x can be decomposed as x=Dα where α is the vector 

coefficient that represent x in D. A signal is said to be 

sparse if a large number of entries of α  are zero or they 

can be discarded without significant loss of information. 

In this case, the signal is sparse in the appropriated basis 

i.e. basis of curvelet coefficients. 

Considering   y Rx RD    (9) 

R is the sampling matrix, to be vector of n-measurements 

of the sparse signal x with number of non-zero 

coefficients 
0

0S n N      with 

many more unknowns than observations. 

It is concluded that original signal X can be 

reconstructed from Y with a large probability by solving 

convex problem 
2

min . .s t y RD   (10) 

If the number of measurements satisfies 

 
2 ( , ). .logn c R D S N  

where,     
1 ,1

( , ) . ,i j
i n j n

R D N max R D
   

        and 

  ( , ) [1, ]R D N   

By solving (10), one can reconstruct sparse t coefficients 

among all possible α satisfying  

y= RDα, if the solution coincides with α, then exact 

recovery is possible 

 

5. CONCLUSIONS 
A new method for combining the curvelet transform 

with iterative thresholding to recover an image is 

demonstrated and the issue is described as a linear 

inverse optimal problem using the L1 norm. Random 

noise suppression in image data is transformed into an 

L1 norm optimization problem based on the curvelet 

sparsity transform. Compared to the conventional 

methods such as median filter algorithm, FX 

deconvolution, and wavelet thresholding, the results of 

synthetic and field data processing show that the 

iterative curvelet thresholding proposed in this paper 

can sufficiently improve signal to noise ratio (SNR) and 

give higher signal fidelity at the same time. Furthermore, 

to make better use of the curvelet transform such as 

multiple scales and multiple directions, we control the 

curvelet direction of the result after iterative curvelet 

thresholding to further improve the SNR 
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